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Abstract

Recent work on modeling the Web graph has dwelt on capturing the degree dis-
tributions observed on the Web. Pointing out that this represents a heavy reliance
on “local” properties of the Web graph, we study the distribution of PageRank values
on the Web. Our measurements suggest that PageRank values on the Web follow a
power law. We then develop generative models for the Web graph that explain this
observation, and moreover remain faithful to previously studied degree distributions.
We analyze these models, and compare the analysis to both snapshots from the Web
and to graphs generated by simulations on the new models. To our knowledge this
represents the first modeling of the Web that goes beyond fitting degree distributions
on the Web.

Keywords: Graph Structure, PageRank, Power Law, Web Measurement, Web Models.

∗Department of Computer Science, Purdue University, West Lafayette, IN 47907-2066, USA. Correspond-
ing author. E-mail: gopal@cs.purdue.edu; Ph: (765)494-0916; Fax: (765)494-0739.

†Verity Inc., 892 Ross Drive, Sunnyvale, CA 94089, USA. E-mail: pragh@verity.com
‡Department of Computer Science, Brown University, Providence, RI 02912-1910, USA. E-mail:

eli@cs.brown.edu

The first and third authors were supported in part by the Air Force and the Defense Advanced Research
Projects Agency of the Department of Defense under grant No. F30602-00-2-0599, and by NSF grant CCR-
9731477. A preliminary version of this paper appeared in the Proceedings of the 8th Annual International
Conference on Combinatorics and Computing (COCOON), Singapore, Lecture Notes in Computer Science
2387, Springer-Verlag, 330-339, 2002.



1 Introduction and Overview

There has been considerable recent work on developing increasingly sophisticated models of

the structure of the Web [1, 5, 6, 7, 12, 19, 21, 20, 2, 15, 13, 23]. The primary drivers for

such modeling include developing an understanding of the evolution of the Web, better tools

for optimizing Web-scale algorithms, mining communities and other structures on the Web,

and studying the behavior of content creators on the Web. In a recent paper, Henzinger [18]

lists modeling the Web graph as one of the six important algorithmic problems that arise

in Web search engines. Prior modeling has dwelt on fitting models to the observed degree

distribution of the Web. One of the remarkable properties about the Web graph is that the

degree distribution appears to follows a power law with a fixed exponent, regardless of the

size of the graph. In fact, various measurement studies have shown [1, 5, 6, 7, 12, 19, 20]

that the in-degree and out-degree distribution of the Web graph follow power laws with

exponents 2.1 and 2.7 respectively. The power law property of the degree distribution is the

key property that most Web models try to capture [1, 5, 6, 7, 12, 19, 21, 20, 2, 15, 13, 23].

While the previous approach to Web modeling is a significant step (both empirically and

analytically), a troubling aspect of this approach is the heavy reliance on a single set of

parameters – the degree distribution. Moreover, since degree distribution is a very “local”

property of graphs 1 something that is well recognized from at least two distinct viewpoints:

(1) as a ranking mechanism, ordering the Web pages in search results by in-degree (popu-

larity of linkage) is relatively easier to spam (than PageRank 2); (2) from a graph-theoretic

standpoint, it is relatively easy to exhibit “very different” graphs that conform to the same

degree distribution [3]. Indeed, the first of these reasons led to the PageRank function [11]

used in the Google engine [17]. In this paper we present a more detailed approach to mod-

eling, to explain the distributions of PageRank values on the Web. Our model augments the

degree distribution approach, so that as a by-product we achieve previous models’ success

in explaining degree distributions.

We first review related background in Section 1.1; the reader familiar with this material

may wish to skip ahead to Section 1.2.

1Adding an edge affects the degrees of only the two nodes concerned. This is unlike PageRank, where
adding an edge between two nodes can affect the PageRank of many other nodes.

2In the sense as mentioned in the previous footnote. That is, it is easy to increase the in-degree of a
particular page, but it is relatively more difficult to increase its PageRank (one has to add in-links from
relatively high PageRank pages).
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1.1 Background and Related Work

We now set the stage for discussing graph models of the Web, beginning with the standard

view of the Web as a graph (Section 1.1.1). We next review the basics of the PageRank

function [11] reportedly used in the Google search engine [17] (Section 1.1.2).

1.1.1 The Web as a Graph

View the Web as a directed graph whose nodes are html pages. Each hyperlink is a directed

edge in the natural manner. The in-degree of a node is the number of edges (hyperlinks)

into it; a simplistic interpretation of the in-degree of a page is as a popularity count. The

out-degree of a node is the number of links out of it; this is simply the number of href tags

on the page. The degree distribution of a graph is the function of the non-negative integers

that specifies, for each k ≥ 0, what fraction of the pages have degree k; there are naturally

two degree distributions for a directed graph, the in-degree distribution and the out-degree

distribution.

These distributions have been the objective of considerable prior study [1, 5, 6, 7, 12, 19,

20], on various snapshots of the Web ranging from the Web pages at a particular university

to various commercial crawls of the Web. Despite the varying natures of these studies, the

in-degree distribution appears to be very well approximated by the function ci/k
2.1 where ci

is the appropriate normalization constant (so that the fractions add to one). Likewise, the

out-degree distributions seem to be very well approximated by the function co/k
2.7. Such

distributions are known as power law distributions.

Recent work of Dill et al. [14] provides some explanation for this “self-similar” behavior:

that many properties of the Web graph are reflected in sub-domains and other smaller

snapshots of the Web. Indeed, this will provide the basis for some of our experiments, in

which we derive an understanding of certain properties of the Web by studying a crawl of

the brown.edu domain. (This methodology was pioneered by Barabasi et al. [5, 6, 7], who

extrapolated from the nd.edu domain of Notre Dame University. They made a prediction on

the diameter of the undirected version of the Web graph, in which one ignores link directions.)

Other properties of the Web graph that have been studied (analytically or empirically)

include connectivity [12], clique distributions [19] and diameter [10].

1.1.2 PageRank Primer

The PageRank function was presented in [11, 25] and is reportedly used as a ranking mech-

anism in the commercial search engine Google [17]. It assigns to each Web page a positive

real value called its PageRank. In the simplest use of the PageRank values, the documents

matching a search query are presented in decreasing order of PageRank. We now briefly
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discuss the notion of PageRank and its practical implementation via the decay parameter.

The original intuition underlying PageRank was to visualize a random surfer who browsed

the Web from page to page. Given the current location (page) q of the surfer, the successor

location is a page reached by following a hyperlink out of page q uniformly at random. Thus

each hyperlink is followed with probability proportional to the out-degree of q. In this setting,

the PageRank of each page is the frequency with which, in the steady state, the page q is

visited by such a surfer. Intuitively, the surfer frequently visits “important” pages such as

yahoo.com because many pages hyperlink to it. Moreover, by calculations from elementary

probability theory, the PageRank of a page q is increased if those pages that hyperlink to q

have high PageRank themselves.

An immediate difficulty with this notion: some pages, or an (internally) connected cluster

of pages may have no hyperlinks out of them, so that the random surfer may get stuck. To

address this, Brin and Page [11] introduced the following device: at each step, with some

probability, the surfer “teleports” to a completely random Web page, independent of the

hyperlinks out of the current page. At least in consideration of the surfing behavior of early

users of the Web (from the mid 1990’s), such serendipitous teleporting followed by some

depth-first exploration (before teleporting again) was reasonable. More important to the

notion of PageRank, it removes the technical difficulty created by (connected clusters of)

pages having no hyperlinks out of them.

Let the pages on the Web be denoted by 1, 2 . . . , m. Let dout(i) denote the number of

outgoing links from page i, i.e., the out-degree of i. Let In(i) denote the set of pages that

point to i. Let p(0 < p < 1) be the decay factor that represents the probability with which

the surfer proceeds with the random walk, while 1 − p is the probability of teleporting to a

random page amongst all m Web pages. Then the PageRank r(i) of page i is given by ([11]):

r(i) =
1 − p

m
+ p ∗

∑

j∈In(i)

r(j)

dout(j)
.

This represents a system of linear equations (one for each i ∈ {1, 2, . . . , m}). We may rewrite

this in matrix form, and the unique solution vector r(i) can be expressed as the eigenvector

of a matrix [11, 25] or as the stationary probability of a random walk [24] (thus
∑

i r(i) = 1).

While we will not get deeper into the mathematical underpinnings of PageRank here

(we refer to [22] for an in-depth survey), it should be intuitively clear that the PageRank

values of pages are global properties (in contrast to the more local nature of in-degree).

One could in principle concoct examples in which the PageRanks of a few nodes could be

“engineered”, but fitting the distribution is relatively harder. This observation is one reason

why we propose that the PageRank distribution is probably a more important characteristic

to model than the degree distribution. Moreover, as we show below, our model captures the

PageRank distribution while remaining faithful to the degree distribution.
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1.2 Main Contributions and Guided Tour of the Paper

We review graph models in Section 2. We augment the current set of models by proposing

a new model – which we call PageRank-based selection – in which attachment probabilities

for new hyperlinks are based on the PageRanks of existing nodes (this model was also

independently proposed in [15], but not motivated by the issues addressed here). The intent

in proposing this model is to explain our empirical observations on PageRank distributions,

described below. We also present a hybrid selection model that is a natural combination of

previous models with our PageRank-based selection model.

In Section 3 we describe experiments on snapshots from the Brown University Web, as

well as from the publicly available WT10g Web snapshot. Our first finding is that the

PageRank distribution appears to follows a power law with exponent 2.1. This is interesting

for several reasons: (1) PageRank is distributed as a power law; (2) it has the same exponent

(namely, 2.1) as that observed for in-degree on many independent snapshots of the Web;

(3) the distribution is (as already known for in- and out-degree distributions) relatively

insensitive to the particular snapshot of the Web on which the measurement is made.

Section 4 adopts analytical as well as simulation-based approaches to validating our

models and fitting model parameters. We first present heuristic analysis based on the “mean-

field” approach [5, 6, 7] that the classical degree-based selection model as well as our new

PageRank-based selection yield power laws for the PageRank distribution. The question

then is whether the exponents predicted by the analysis match the observations. Given that

these are parameterized models, we are able to find combinations of models and parameters

that do indeed fit both the PageRank and degree distributions. We verify that these models

do generate graphs with the correct distributions through simulations in which we generate

multiple random graphs and measure their distributional properties (Section 4.3).

To our knowledge, these are the first results that capture global distributional properties

in a model, validating empirical observations through analysis and simulation. Our new

models simultaneously capture degree distributions — local properties studied in previous

models.

2 Web Graph Models

In the Erdös-Renyi model of random graphs [8], each edge is directed from a node to another

node that is chosen uniformly at random from all the other nodes in the graph. There is

a wealth of research on such graphs, and many properties of such random graphs are well

understood. For instance, an Erdös-Renyi random graph in which the average out-degree

of each node is roughly 7 (as is the observed average out-degree of Web pages), the degree

distributions are Poisson, and it is unlikely that there are any clique-like structures with
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more than a handful of nodes. Given the many consistent observations of power law degrees

on the Web graph, as well as the superabundance of clique-like structures [20], it is clear

that the Web graph does not conform to the Erdös-Renyi model. Nevertheless, as we will

see below, elements of random selection do play a role in models that are more faithful to

the Web graph.

A number of research projects proceeded to develop models that better explained the

power law behavior of degree distributions on the Web; see [26] for a survey of these. In all

of these, the view is that of nodes and edges being added to the graph one at a time. As

noted above, it does not suffice for such newly arriving edges to choose to point to a node

(page) chosen uniformly at random, since this does not yield a power law distribution for

degrees. The simplest model to overcome this problem uses the following device: each edge

chooses the node to point to at random, but with non-uniform probabilities for choosing

the various nodes. In particular, the edge points to a node q in proportion to the current

in-degree of q. This yields Web graphs whose in-degree distributions have been shown to

converge to the distribution ≈ 1/k2 [5, 6, 7].

However, as noted earlier, empirical studies have shown that in-degrees are in fact dis-

tributed as ≈ 1/k2.1 (rather than 1/k2). To help explain the exponent of 2.1, Kumar et

al. [21] introduced the following more detailed process by which each edge chooses the node

to point to. Some fraction of the time (a parameter they call α ∈ [0, 1]) the edge points to

a node chosen uniformly at random. The rest of the time (a fraction 1 − α), the edge picks

an intermediate node v at random, and copies the destination of a random edge out of v. In

other words, the new edge points to the destination of an edge e, chosen at random from the

outgoing edges of a random node v. They then explain a number of empirical observations

on the Web graph including the in-degree exponent of 2.1 and the large number of clique-

like structures observed by [20]. In fact, they prove theorems that derive the exponent as

a function of the parameter α. There is another way of viewing this model: a fraction α

of the edges go to random nodes, while the remainder choose destination nodes in propor-

tion to their current degrees. (A similar model incorporating both preferential and random

components is also proposed in [23].) Thus, their model may be viewed as a generalization

of the models of Barabasi and others, parameterized by α. We will henceforth refer to this

model as the degree-based selection model. Could it be that this model would also explain

the PageRank distributions we observe on the Web?

Before we address this question, we next introduce a new model inspired by the α model

above. Suppose that each edge chose its destination at random a fraction β ∈ [0, 1] of the

time, and the rest of the time chose a destination in proportion to its PageRank. We will

call this the PageRank-based selection model.

However, this now raises the question: if we could develop a model that explained ob-
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served PageRank distributions, could it be that we lose the ability to capture observed degree

distributions? To address this, we now present the most general model we will study. There

are two parameters a, b ∈ [0, 1] such that a + b ≤ 1. With probability a an edge points to a

page in proportion to its in-degree. With probability b it points to a page in proportion to

its PageRank. With the remaining probability 1−a−b, it points to a page chosen uniformly

at random from all pages. We thus have a family of models; using these 2-parameter models

we can hope to simultaneously capture the two distributions we investigate – the PageR-

ank distribution (representing global properties of the graph), and the in-degree distribution

(representing local properties of the graph). We will call this the hybrid selection model.

3 Experiments

To set the context for exploring the models in Section 2, we study the distribution of PageR-

anks (as well as of the in- and out-degrees) on several snapshots of the Web.

3.1 Experiments on the Brown University Domain

Our first set of experiments was on the Web graph underlying the Brown University domain

(*.brown.edu). Our approach is motivated by recent results on the “self-similar” nature

of the Web (e.g., [14]): a thematically unified region (like a large subdomain) displays the

same characteristics as the Web at large. The Brown Web consisted of a little over 100,000

pages (and nearly 700,000 hyperlinks) with an average in-degree (and thus out-degree) of

around 7. This is very close to the average in-degree reported in large crawls of the Web [20].

Our crawl started at the Brown University homepage (www.brown.edu – “root” page) and

proceeded in breadth-first fashion; any URL outside the *.brown.edu domain was ignored.

We did prune our crawl – for example, URL’s with /cgi-bin/ were not explored.

The graphs shown in Figures 1, 2 and 3 summarize our results on the in-degree, out-

degree and the PageRank distributions in the Brown Web graph3. Our experiments show

that the in-degree and out-degree distribution follows a power law with exponent 2.1 and

2.7 respectively. This is strikingly similar to the results reported on far larger crawls of the

Web [12, 20]. For example [12] report exactly the same power law exponents on a crawl of

over 200 million pages and 1.5 billion hyperlinks.

However, the most interesting result of our study was that of the PageRank distribution.

We first describe our PageRank computation. As in [25], we first pre-process pages which

do not have any hyperlinks out of them (i.e., pages with out-degree 0): 4 we assume that

3To avoid excessively “dark” plots resulting in large amounts of redundant data, all plots in this paper
have been sub-sampled.

4Such a page with out-degree 0 is called a rank leak [25].
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these have links back to the pages that point to them [4]. In our PageRank computation

we set the decay parameter to 0.9; this is a typical value reportedly used in practice (e.g.,

[11] uses 0.85), and the convergence is fast (under 20 iterations). Similar fast convergence

is reported in [25, 11]. However, varying the decay parameter does not significantly change

our results, as long as the parameter is fairly close to 1. In particular, we get essentially the

same results for decay parameter values down to 0.8.

The main result of our PageRank distribution plot is that a large majority of pages

(except those with very small PageRank) follow power law with an exponent close to 2.1.

That is, the fraction of nodes having PageRank r is proportional to 1/r2.1. In Section 4 we

will give an analysis suggesting this PageRank distribution, based on various models from

Section 2.

We also note that the distribution is almost flat for pages with very low PageRank. To

check whether this is an anomaly, we repeated the experiments for the Brown Computer

Science department subdomain (*.cs.brown.edu) and we got almost identical results (i.e.,

in-degree, out-degree and PageRank distributions follow power laws with almost identical

exponents) even though *.cs.brown.edu is a much smaller graph (around 25,000 nodes);

and a similar flattening at the top (corresponding to pages with very low PageRank) in the

PageRank distribution. Comparing this pattern to the experiments on the WT10g corpus

(next subsection) that captures a more generic subset of the Web, suggests that relatively

structured domains, such as brown.edu and cs.brown.edu, have a smaller fraction of very

“unimportant” pages than predicted by the power law distribution and observed in less

structured corpora.

3.2 Experiments on WT10g Data

We repeated our experiments on the WT10g corpus [27], a 1.69 million document testbed

for conducting Web experiments. The results are almost identical to those on the Brown

Web; the in-degree, out-degree, and PageRank distributions follow power laws with exponent

close to 2.1, 2.7 and 2.1 respectively. Figure 4 shows the plot of PageRank distribution of the

WT10g corpus (we are not showing the in-degree and out-degree distribution plots as they

are very similar to those of the Brown Web). The power law here appears much sharper than

in the Brown Web. As noted above, a possible explanation is that unlike the Brown domain,

the WT10g corpus is constructed by a careful selection of Web pages so as to characterize

the whole Web [27].
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Figure 1: Log-log plot of the in-degree distribution of the Brown domain (*.brown.edu).

The in-degree distribution follows a power law with exponent close to 2.1.

4 Fitting the Models: Analysis and Simulations

In this section we address some of the modeling questions raised in Section 2. Having

obtained the empirical distributions in Section 3, we first give analytical predictions of the

shape of the PageRank distributions for the degree-based and PageRank-based selection

models of Section 2. The intent is to infer what choices of these model parameters would

give rise to the distributions observed in our experiments. Finally, in Section 4.3 we generate

random graphs according to these fitted models, to see if in fact they give rise to graphs that

match the distributions observed on the Web.

4.1 Degree-Based Selection

Consider a graph evolving in a sequence of time steps – as noted in Section 2 such evolution

is not only realistic in the context of the Web, it is also a feature of all Web graph models.

A single node with r outgoing edges is added at every time step. (We assume that we start

with a single node with a self-loop at time 0 [9]).) Each edge chooses its destination node

independently with probability proportional to 1+in-degree5 of each possible destination

node. That is α = 0, and attachment is solely based on degree with no random component.

This model is essentially the one analyzed by Barabasi et al. and is a special case of the α

model of Kumar et al.

Let πt(v) represent the PageRank of v at time step t. We can interpret the PageRank

5We assume that each incoming node has “weight” 1, else all growth is trivial.
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Figure 2: Log-log plot of the out-degree distribution of the Brown domain (*.brown.edu).

The out-degree distribution follows a power law with exponent close to 2.7.

as the stationary probability of a random walk on the underlying graph, with the teleport

operation (Section 1.1.2) being modeled by a “central” node c (see Figure 5). At each step,

the surfer either decides to continue his random walk with probability p or chooses to return

to the central node with probability 1−p; from the central node he jumps to a random node

in the graph. To write an expression for πt(v) it is useful to define f t(v), the “span” of v at

time t: the sum of the in-degrees of all nodes in the network (including v itself) that have

a path to v that does not use the central node (we also refer to the nodes contributing to

the span as “span nodes”). Since each edge contributes a 1/r fraction (as mentioned earlier,

each node has r outgoing edges) of the stationary probability of its source node we can

bound πt(v) for the above random walk on a Markov chain by using the standard stationary

equations 6 as follows:
f t(v)π(c)pH

rt
≤ πt(v) ≤ f t(v)π(c)

rt
(1)

where π(c) is the stationary probability of the central node and H is the longest (directed)

path in the network (ignoring link directions and the central node) 7. For the upper bound

we use the fact that the each edge in the span of v contributes π(c)/rt to the stationary

probability of v, ignoring the probability of jumping to the central vertex and assuming that

6The stationary probabilities πj ’s of a irreducible, finite, and aperiodic Markov chain satisfy the equations:
πj =

∑
k πkPk,j for all j (see e.g., [24]) where P is the transition probability matrix. In other words, every

node k “contributes” Pkj fraction of its stationary probability to πj . It is easy to see that the Markov chain
induced by the directed graph considered here (Figure 5) is irreducible, finite, and aperiodic.

7Our model evolves essentially as a directed acyclic graph (DAG) with self loops and H is the height of
the DAG.
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Figure 3: Log-log plot of the PageRank distribution of the Brown domain (*.brown.edu).

A vast majority of the pages (except those with very low PageRank) follow a power law with

exponent close to 2.1. The plot almost flattens out for pages with very low PageRank.

the entire contribution goes to πt(v); for the lower bound we do not ignore the probability of

jumping, and hence the contribution of each edge goes down by a factor of pH (in the worst

case). We note two facts here. First, a simple calculation shows that π(c) = (1− p)/(2− p),

a constant independent of t; second, it can be shown that when t is sufficiently large, H at

time t is at most logarithmic in the size of the graph (which is t) [10]. Thus if the decay

factor is close to 1 8 we can approximate πt(v) as

πt(v) ≈ f t(v)π(c)

rt
(2)

We now proceed to calculate f t(v). We use the mean-field approach of Barabasi et al. [7] as

follows. Assuming f t(v) to be continuous, we can write the differential equation for the rate

of change of f t(v) (the span of v) with time:

d(f t(v))

dt
=

f t(v)

t
(3)

where the right hand side denotes the probability that an incoming edge connects to one of

the span nodes of v (this also represents the rate of change of f t(v) since an incoming node

8Actually, we will obtain the same power law result, even if we do not assume this. For example, if we
just assume that the decay factor is a constant, we will get a factor of pH ≈ plog t and this will only affect
the exponent of t in the denominator of Equation 2 and, as the reader can verify, it will not change the final
power law result in Equation 6. We note that, however, the power law crucially depends on the (differential)
Equation 3.
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Figure 4: Log-log plot of the PageRank distribution of the WT10g corpus. The slope is close

to 2.1. Note that the plot looks much sharper than the corresponding plot for the Brown

Web. Also, the tapering at the top is much less pronounced.

connects with probability proportional to degree; if the incoming node connects to any span

node of v it will increase the span of v). The solution to differential equation 3 with the

initial condition that node v was added at time tv is

f t(v) =
t

tv
(4)

Combining Equations (2) and (4), we have

πt(v) ≈ π(c)

rtv
(5)

Using the above equation,

Pr(πt(v) < φ) = Pr(tv >
π(c)

rφ
)

Since nodes are added at equal time intervals, the probability density of tv is 1/t. Thus we

obtain

Pr(tv >
π(c)

rφ
) = 1 − Pr(tv ≤ π(c)

rφ
) = 1 − π(c)

rtφ

which yields that the probability density function F for πt(v) is:

F (φ) =
∂(Pr(πt(v) < φ))

∂φ
≈ π(c)

rtφ2
(6)

implying that the PageRank follows a power law with exponent 2, independent of r and t.

Simulations of this model (Figure 6) agree well with this prediction.
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Central vertex

v

Figure 5: Random walk on the Web graph. From each of the (bottom) vertices the surfer

decides to continue his random walk with probability p, or decides to go to the central vertex

with probability 1− p. From the central vertex he jumps to a random vertex. The quantity

f t(v) (the span of vertex v) is 6 in the above graph: it is the sum of the in-degrees of nodes

which have a path to v including v itself.

As already mentioned in Section 2 the in-degree distribution of this model follows a

power law with exponent 2, the same as the PageRank distribution derived above. This is

striking given that in our empirical studies too, the in-degree and PageRank distributions

had identical power laws. However, the empirically observed power laws have exponents of

2.1; thus the degree-based selection model does not quite match the in-degree and PageRank

exponents observed in practice. Now a natural question is whether we can make it match

both the distributions by changing α, i.e., by incorporating a random selection component

in choosing nodes. The answer is yes; more on this in Section 4.3 below. But first we analyze

PageRank-based selection.

4.2 PageRank-Based Selection

We show that power law emerges for the PageRank and degree distributions in this model

as well, but the exponents are different from the degree-based model.

Our model and analysis is analogous to Section 4.1. A single node with r outgoing edges
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Figure 6: Log-log plot of degree-based selection with α = 0. The number of nodes shown

is 300,000 (+), 200,000 (*) and 100,000 (x). It clearly shows that the slope is 2, confirming

the power law predicted by analysis.

is added at every time step, as before. Each edge chooses its destination node independently

with probability proportional to the PageRank of each possible destination node. That is,

β = 0, and attachment is solely based on PageRank with no random component (i.e., a

incoming node chooses to connect with probability proportional to PageRank only). Using

the same notations and arguments as before, we can show that Equation (2) holds. However,

f t(v) follows a different differential equation from Equation (3). Instead we have

d(f t(v))

dt
≈ f t(v)r

2rt
(7)

The reasoning is as follows. The probability that f t(v) increases by one is the probability

that the incoming node chooses any one of the nodes in the span to connect to, which is

proportional to the sum of the PageRanks of all the span nodes of v. To calculate this

probability, we see that each directed edge contributes nearly twice to the sum (if p is

sufficiently large) and the total PageRank is thus proportional to the sum of the degrees

which is 2rt.

The solution of the above differential equation with the initial condition that node v was

added at time tv is

f t(v) = (
t

tv
)1/2 (8)

The rest of the analysis is similar to the degree-based analysis. Combining Equations (2)

and (8), we have

πt(v) ≈ π(c)

r(ttv)1/2
(9)
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Using the above equation,

Pr(πt(v) < φ) = Pr(tv >
(π(c))2

r2tφ2
)

Since nodes are added at equal time intervals, the probability density of tv is 1/t. Thus we

obtain

Pr(tv >
(π(c))2

r2tφ2
) = 1 − (π(c))2

r2t2φ2

which yields that the probability density function F for πt(v) is:

F (φ) =
∂(Pr(πt(v) < φ))

∂φ
≈ 2(π(c))2

r2t2φ3
(10)

i.e., predicting that the PageRank follows a power law with exponent 3. Analogously, we can

show that the degree also a follows a power law with exponent 3. Simulations agree quite

well with this prediction.

Thus, the PageRank-based selection model with β = 0 does not match the empirically

observed in-degree and PageRank exponents. Can we hope to match the observations by

varying β? Unlike the degree-based selection model, the answer is no; increasing β will only

increase the power law exponent (above 3) for the in-degree distribution. This can be verified

by experiments, as well as by a direct extension to the analysis above. We are thus left with

the degree-based selection model and the hybrid selection model of Section 2 as candidates

for explaining the observations.

4.3 Simulations of the Generative Models

An accurate model of the Web graph must conform with the experimentally observed in-

degree, out-degree, and PageRank distributions. We simulated the degree-based and hybrid

selection models defined in Section 2 under various parameters to find settings that generate

the observed empirical distributions. We simulated graphs of size up to 300,000 nodes, and

we varied the average number of new edges generated per new node generation (time step).

In particular, to be “close” to the real Web’s average out-degree (and in-degree), we focused

on the range in which the average number of edges added per new node is around 7. We

obtained essentially the same results for the power laws, irrespective of the size (from 10,000

nodes onwards) or the number of outgoing edges.

Our first step was fitting the out-degree distribution. Following Kumar et al., we use the

degree-based copying model with a suitable value of β to fit the out-degree distribution to

a power law with exponent 2.7. At each time step, the incoming node receives edges from

existing nodes. With probability β a node is chosen uniformly at random, with probability

1 − β the node is chosen proportional to the current out-degree distribution. Note that the
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out-degree distribution is fixed independently of the in-degree distribution. We use β = 0.45

to get a power law exponent equal to 2.7.

We turn now to the problem of fitting the in-degree distribution. We first simulated the

degree-based selection model. Setting α = 0 (or β = 0), both the in-degree and PageRank

distributions followed a power law with exponent 2. We observed that increasing α increases

the exponents in the in-degree and PageRank distributions. In particular, setting α ≈ 0.2

brings both exponents to the empirical value of 2.1. This value is unique; by increasing

or decreasing α we lose the fit. Thus, we found a setting of the parameters for which the

degree-based selection model simultaneously fits all the three distributions.

Since degree-based selection model fits the empirical data, a natural question is whether

PageRank-based selection is irrelevant in modeling the Web graph. To answer this, we ex-

perimented with the 2-parameter hybrid selection model proposed in Section 2. Surprisingly

when a = b ≈ 0.33, we could again simultaneously fit all three distributions. Thus, interest-

ingly, we have an alternative model, with a substantial PageRank-based selection component,

that fits the Web empirical data.

5 Conclusion and Further Work

We study the PageRank distribution on the Web graph, and use it to develop more accurate

generative models for the evolution of the Web graph. Our first finding is that PageRank

distribution on snapshots of the Web graph follows a power law distribution with the same

exponent as the in-degree distribution. Unlike in-degree, PageRank is a global property of

the graph, thus one expects to obtain more accurate modeling of the Web graph by fitting

the models to the PageRank distribution.

Our study of PageRank distributions can also be of independent interest for Web search

and ranking pages. For search engines employing PageRank and associated ranking schemes,

it is important to understand whether, for instance, 99% of the total PageRank is concen-

trated in (say) 10% of the pages. This (especially in conjunction with query distribution

logs) can have implications for compressing inverted indices and optimizing the available

storage. Further work is needed to explore this.

We consider three possible models for the Web graph: degree-based selection model,

PageRank-based selection model, and a hybrid model. Our analysis shows that the PageRank-

based selection model cannot fit the empirical data. For the two other models we found set-

tings of parameters under which the model fits simultaneously the in-degree and out-degree

distributions and the PageRank distribution. A natural question for further study is whether

one of these models describes the Web better than the other.

Another interesting question that arises from our work is whether PageRank is strongly
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correlated with in-degree. We note that PageRank and in-degree follow power laws with

almost identical exponents. Could it be that PageRank is highly correlated to in-degree, and

thus the computational overhead (and ranking magic) of PageRank boils down to a simple

popularity count by in-degree? Clearly one can concoct graphs for which the PageRank and

degree distributions are highly correlated, just as one can concoct graphs for which they are

not – but what happens on the true Web? Our preliminary experiments show not much

correlation between the two properties on the Web graph as a whole. In general, a high

in-degree of a node does not imply high PageRank and vice versa.

All models proposed and analyzed so far grow by making “global” choices: connections

are chosen by various distributions, but from all the existing nodes. In practice, links between

nodes cannot be fully explained just by the relative popularity of the nodes. While nodes

are likely to link to important or popular nodes, these nodes are also likely to be in the

same sub-community. Thus another challenging question is extending these simple models

to capture the important notion of communities and sub-communities on the Web.

There are also important random-graph theoretic questions that remain to be solved:

how to characterize precisely the PageRank distribution in the models proposed here. Our

analysis is only approximate and it seems to work only for simplified versions of the degree-

based and PageRank-based models. A key technical difficulty here seems to be in analyzing

the stationary distribution of a dynamically changing directed graph.
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